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Abstract
Chronic kidney disease (CKD) mineral and bone disorder (MBD) comprises a triad of biochemical abnormalities (of calcium, 
phosphate, parathyroid hormone and vitamin D), bone abnormalities (turnover, mineralization and growth) and extra-skeletal 
calcification. Mineral dysregulation leads to bone demineralization causing bone pain and an increased fracture risk com-
pared to healthy peers. Vascular calcification, with hydroxyapatite deposition in the vessel wall, is a part of the CKD-MBD 
spectrum and, in turn, leads to vascular stiffness, left ventricular hypertrophy and a very high cardiovascular mortality risk. 
While the growing bone requires calcium, excess calcium can deposit in the vessels, such that the intake of calcium, calcium- 
containing medications and high calcium dialysate need to be carefully regulated. Normal physiological bone mineralization 
continues into the third decade of life, many years beyond the rapid growth in childhood and adolescence, implying that 
skeletal calcium requirements are much higher in younger people compared to the elderly. Much of the research into the 
link between bone (de)mineralization and vascular calcification in CKD has been performed in older adults and these data 
must not be extrapolated to children or younger adults. In this article, we explore the physiological changes in bone turnover 
and mineralization in children and young adults, the pathophysiology of mineral bone disease in CKD and a potential link 
between bone demineralization and vascular calcification.
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Introduction

An important component of chronic kidney disease (CKD) 
is mineral and bone disorder (CKD-MBD). Kidney Disease 
Improving Global Outcomes (KDIGO) defines MBD as the 
triad of biochemical abnormalities (calcium, phosphate, 
parathyroid hormone and vitamin D), bone abnormalities 
(turnover, mineralization, volume and growth) and extra-
skeletal calcification [1]. Bone demineralization caused 

by mineral homeostatic imbalance, is a key factor in the 
increased bone-related morbidity, fracture risk, cardiovascu-
lar disease (CVD), and mortality seen in CKD-MBD [1, 2].

The skeletal requirements for calcium differ at different 
stages of physiological growth and skeletal maturation. The 
growing bone must avidly absorb calcium in order to miner-
alize, and calcium requirements are highest during periods 
of rapid growth such as infancy and adolescence. Thereafter, 
under physiological conditions, skeletal mineralization must 
continue until the third decade of life, albeit at a much slower 
rate, before stabilizing and potentially demineralizing in late 
adulthood. The calcium requirements of the skeleton help 
determine the calcium balance of the individual. The MBD 
of CKD significantly impacts on normal bone turnover and 
mineralization processes leading to reduced bone strength, 
bone pain, fractures, and short stature. Moreover, when the 
normal bone calcium uptake is impaired, excess calcium 
may be deposited in soft tissues, including the vasculature.

In this article we explore the physiological changes in the 
skeleton from childhood to adulthood, the normal skeletal 
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mineralization process, and the effects of CKD on bone 
health. We also examine a possible link between bone dem-
ineralization and vascular calcification through imaging and 
biomarker studies. We stress the importance of approaching 
CKD-MBD in children and young adults as a continuum, 
and not extrapolating data from studies in older adults with 
CKD to younger patients.

Normal bone turnover and mineralization 
in childhood and adulthood

The normal bone undergoes a constant cycle of modelling 
and remodelling. During modelling new bone is formed and 
minerals are deposited. In childhood and adolescence mod-
elling is the predominant process that leads to the bones 
changing shape and elongating. The periosteum expands 
alongside longitudinal growth, with more minerals accrued 
and laid down. Remodelling involves resorption of old 
bone and replacement with new bone through formation. 
Modelling predominates in childhood and early adult life as 
the bone grows and gains strength, and therefore, mineral 
accrual is at its highest. In later adulthood, remodelling is 
the predominant process. Mineral consumption is in a neu-
tral balance after the mid-30 s until older age, when physi-
ological bone demineralization tends to occur [3].

The process of bone formation and resorption is collec-
tively known as bone turnover and reflects the continuous 
metabolic activity of the skeleton. The two bone compart-
ments, the metabolically active inner trabecular compart-
ment and the mineral rich, dense outer cortical layer exist 
together to provide the mechanical function of anchoring 
muscles and tendons, allowing mobility, and maintaining 
body structure and posture. If there is any imbalance in the 
resorption/formation process towards resorption this can 
lead to a porous cortical compartment and thinning of the 
trabeculae resulting in demineralization and osteoporosis 
[4].

The modelling–remodeling cycle is controlled by three 
cell types: osteoblasts on the bone surface that deposit 
new bone matrix; osteocytes embedded in bone that are 
terminally differentiated from osteoblasts and function as 
mechanical and metabolic sensors; and the mineralized 
osteoid-resorbing osteoclasts (See Fig. 1).

Osteoblasts

Osteoblasts are the primary cells that form bone. They pro-
duce type 1 collagen, which becomes the scaffolding around 
which mineralization occurs to form the osteoid. Phosphates 
from matrix vesicles combine with calcium and other ele-
ments to form hydroxyapatite crystals that are deposited 
around the preformed collagen scaffold in a controlled 

process. Osteoblastic differentiation is mainly regulated by 
the canonical Wnt signalling pathway that plays a central 
role in normal bone development and homeostasis, as well as 
bone repair and regeneration following injury [5]. The Wnt-
β-catenin pathway regulates the differentiation of pluripotent 
mesenchymal stem cells into either osteoblasts or chondro-
cytes, and in the later stages of repair, form pre-osteoblasts 
to differentiate into osteoblasts.

Osteoclasts

Osteoclasts are responsible for controlling bone resorp-
tion. Mature osteoclasts bind to bone matrix, becom-
ing polarised. The side of the cell in contact with the 
area to be resorbed is called the ruffled border and this 
secretes metalloproteinases, lysozymes and cathep-
sin K that drive resorption. The collagen, calcium and 
phosphate that result from this process are in turn endo-
cytosed by the osteoclast, with calcium and phosphate 
released into the blood [6]. Resorption is activated by the 
RANK–RANKL–OPG pathway, activating osteoclasts and 
driving their differentiation. Osteoclast precursors express 
RANK (receptor activator of nuclear factor-κß), which is 
activated by its ligand, RANKL, produced by osteoblasts 
and osteocytes. Osteoprotegerin (OPG), also a product of 
osteoblasts and osteocytes, is a decoy receptor for RANKL 
with a high affinity for the RANK receptor, but with the 
opposite effect of neutralising and pausing the osteoclas-
tic function activated by the RANKL–RANK complex. 
Thus, the RANKL/OPG ratio is an important determinant 
of bone mass.

Osteocytes

As the bone matrix is deposited by osteoblasts, some of 
these cells undergo terminal differentiation into osteocytes 
and become embedded in the lacunae in the mineralized 
osteoid [7, 8]. Eventually, osteocytes become the most 
common cell type in bone, comprising more than 90% of 
bone cells. Their long dendritic processes allow them to 
connect and communicate with each other and detect the 
mechanical forces placed upon the skeleton as well as detect 
microdamage [3]. Osteocytes in turn upregulate osteoblasts 
through nitric oxide and prostaglandin E2 production or 
downregulate them through sclerostin secretion. Sclerostin 
binds to growth factors, preventing osteoblast differentia-
tion and also prevents the activation of the Wnt signalling 
pathway [9]. Osteocytes also produce Fibroblast Growth 
Factor-23 (FGF23), which together with its co-receptor 
Klotho, induces phosphaturia [10, 11] and suppresses cal-
citriol production [12].
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Mineralization

The mineral component of bone is hydroxyapatite 
 [Ca10(PO4)6(OH)2] as well as crystals of calcium and phos-
phate coupled with carbonate, sodium and magnesium [13]. 
Osteoblasts promote bone mineralization by depositing the 
protein component of the extracellular bone matrix, and 
mineralization follows. Hormones such as PTH and vita-
min D, as well as secretory calcium-binding phosphopro-
teins (SCPPs) expressed by osteoblasts regulate this process. 
SCPP proteins, such as osteonectin, bind to hydroxyapatite 
and type 1 collagen. Other SCPPs are osteopontin and bone 
sialoprotein which provide a focus for mineral crystal for-
mation. The extent of bone mineralization is dependent on 
calcium availability, but also on the extracellular levels of 

phosphate and pyrophosphate  (P2O7
4−, a phosphate-contain-

ing inhibitor of hydroxyapatite crystal growth and thus of 
mineralization) controlled by alkaline phosphatase enzymes. 
Bone alkaline phosphatase may increase local phosphorus 
concentrations, remove pyrophosphate, or modify phos-
phoproteins to control their ability to act as facilitators of 
crystallization [13].

Bone growth

During the growth period, the modelling process at the long 
bones occurs at the growth plate. In this area, new bone is 
built in places that were previously occupied by cartilage. 
Flat chondrocytes become hypertrophied and then become 

Fig. 1  A schematic diagram of the normal bone mineralization pro-
cess. Osteoblasts produce type 1 collagen which becomes the scaf-
folding around which mineralization occurs to form the osteoid. 
Osteoblastic differentiation is mainly regulated by the Wnt signalling 
pathway. Hormones such as PTH and vitamin D regulate this process. 
Secretory calcium-binding phosphoproteins (SCPPs), such as oste-
onectin, bind to hydroxyapatite and Type 1 collagen. Other SCPPs are 
osteopontin and bone sialoprotein which are used as a focus for min-
eral crystal formation. Osteoclasts control bone resorption. Mature 
osteoclasts bind to bone matrix and secrete lysozymal enzymes to 
then release calcium and phosphate into the serum. Resorption is acti-

vated by the RANK–RANKL–OPG pathway. Osteoclast precursors 
express RANK, which is activated by its ligand, RANKL, produced 
by osteoblasts and osteocytes. Osteoprotegerin (OPG), also a product 
of osteoblasts and osteocytes, is a competitor receptor for RANKL 
with the opposite effect of neutralising and pausing the osteoclastic 
function activated by the RANKL–RANK complex. Osteocytes are 
terminally differentiated osteoblasts, embedded in mineralised oste-
oid. Osteocytes upregulate osteoblasts through nitric oxide and pros-
taglandin E2 production or downregulate them through sclerostin 
secretion
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part of the mineralizing cartilage. These cells are arranged 
in columns that line up together, simultaneously. As the 
chondrocytes at the bottom become hypertrophic, and are 
penetrated by osteoblasts that form spongy bone, there is a 
proliferation of the flat chondrocytes at the top of the growth 
plate. This process is controlled by several factors, including 
the role of Indian hedgehog (Ihh) and parathyroid hormone-
related protein (PTHrP) [14]. There is a negative-feedback 
loop, where PTHrP is secreted from perichondrial cells and 
chondrocytes at the ends of long bones and acts on receptors 
of proliferating chondrocytes to ensure continued prolifera-
tion. Conversely, when PTHrP production decreases or is 
sufficiently distant, Ihh is produced, increasing the rate of 
proliferation and stimulating PTHrP synthesis at the ends 
of bones [15]. However, PTHrP and PTH share the same 
receptor [16]. This may be a cause for the growth defects 
that are commonly seen in children with CKD, if PTH levels 
are persistently high. Long term exposure to high PTH levels 
leads to fibrous changes in the bones, and these may play a 
role in hindering bone growth [17].

Role of vitamin D in bone mineralization

Vitamin D is an important regulator of bone health, both 
by increasing calcium and phosphate absorption from the 
gut and by regulating bone mineralization. Vitamin D defi-
ciency leads to decreased calcium absorption and ultimately 
the release of calcium from the bones in order to maintain 
circulating calcium concentrations [18], resulting in poor 
bone mineralization and rickets in children and osteoporosis 
in adults.

Vitamin D is a key player in bone mineralization, not 
solely through adequate intestinal calcium absorption, but 
also through the action of active 1,25-dihydroxyvitamin D 
[1,25(OH)2D] in growth plate development, optimal osteo-
blastic bone formation and bone resorption [19]. Although 
there is some conflicting literature, as some studies have 
shown inhibition of osteoclastogenesis by 1,25(OH)2D 
in CKD models and controls [20], it is thought that 
1,25(OH)2D stimulates osteoclastogenesis, by upregulat-
ing expression of the RANK ligand by osteoblasts and the 
RANK-ligand receptor on osteoclast precursor cells [21]. 
The RANK receptor binds RANKL and induces maturation 
of preosteoclasts to osteoclasts. Osteoclasts then increase 
the resorptive potential of the bone, releasing calcium into 
the blood [22]. Whilst this calcium release from the bone is 
accompanied by phosphate release as well, FGF-23 secreted 
by osteocytes works to increase phosphaturia in the distal 
tubule by upregulating sodium-phosphate transporters to 
prevent hyperphosphatemia [23], at least in healthy indi-
viduals and those with early stages of CKD [11].

Although the overall benefits of Vitamin D are debated 
[24], it is recognised that adequate Vitamin D levels pre-
vent nutritional rickets, suppress PTH [25–27], and increase 
intestinal calcium absorption [28]. There is some indication 
that Vitamin D repletion is associated with improved lum-
bar spine BMD [29]. In health and in CKD, Vitamin D is 
crucial in the mineralization of bone matrix and thus bone 
formation.

Normal calcium requirements in healthy 
individuals of different ages

Calcium in sufficient quantities is required during the rapid 
growth phase of childhood and adolescence, in order to 
mineralize newly formed bone. An adequate intake and 
absorption of calcium, together with genetic influences, 
physical activity, nutrition and lifestyle factors is required 
in order to promote skeletal growth and mineralization 
[30]. The skeletal mass increases from a mere 25 g at birth 
to around 1000–1200 g in adult males and females. Thus, 
children, particularly in infancy and adolescence, have a 
higher demand for calcium compared to adults, and are 
in positive calcium balance [31]. A review of 519 cal-
cium balance studies performed on participants from birth 
to 30 years old showed that calcium balance correlated 
positively with oral calcium intake. The highest calcium 
requirement was in the first year of life (503 ± 91 mg/
day) and during pubertal growth (396 ± 164  mg/day). 
Adult requirements were considerably lower thereafter 
(114 ± 133 mg/day) (see Table 1) [31].

A higher calcium intake in the diet has a direct effect on 
bone mineral density (BMD) in healthy children [35–37]. A 
daily consumption of a high calcium intake was associated 
with a greater increase in radial and femoral BMD in healthy 

Table 1  Threshold intake and mean calcium balance per age group

Following analysis of calcium balance studies in 519 healthy individ-
uals, this table shows the threshold intake at which the calcium bal-
ance does not increase further with increasing intake, and the mean 
balance for each age group. Under the age of 30 years, the calcium 
balance is always positive due to skeletal calcium accrual, but as 
more mineral is laid down, and peak bone mass is reached, the bal-
ance mean becomes smaller. Adapted from Matkovic & Heaney [26]. 
Over 30 yrs adapted from [32–34]

Age group Threshold intake  
(mg/day)

Threshold balance 
(mg/day)

0–1 yrs 1090  + 503 ± 91
2–8 yrs 1390  + 246 ± 126
9–17 yrs 1480  + 396 ± 164
18–30 yrs 957  + 114 ± 133
 > 30 yrs 583  + 72 ± 35
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pre-pubescent girls [38], and a significant increase in BMD 
(9.6% vs. 8.5%, P = 0.017) and bone mineral content (27.0% 
vs. 24.1%, P = 0.009) by dual energy x-ray absorptiometry 
(DXA) in 12-year-old girls studied over an 18-month period 
[39]. A randomized trial of 354 adolescent girls showed that 
increased calcium intake was associated with a significantly 
higher radial and total body BMD on DXA scan over the 
7-year follow up [40].

When bone growth ceases, bone elongation has reached 
its maximum, and mineralization only occurs at the sites 
of bone remodelling and the adult requirements for cal-
cium are reduced. This bone mineralization threshold, also 
known as ‘peak bone mass’ (PBM), reflects the maximum 
mineral content in bone [35] (Fig. 2). Cross-sectional and 
longitudinal studies have suggested that PBM is achieved 
in the third decade of life. In 156 healthy adult women, the 
mineral accrual stopped by 28.3 to 29.5 years of age [41]. 
In 300 healthy females aged 6 to 32 years, bone mineral 
content was highest in the early twenties (23.0 ± 1.4 years); 
but increased into the early thirties [42]. Studies looking at 
dietary information with serial DXA scans longitudinally 
from childhood to early thirties showed that peak bone mass 
was achieved early in the third decade of life, many years 
after peak height velocity of bone growth had been reached. 
Thus, skeletal mineralization continues long after the geneti-
cally predetermined height potential is reached [43].

The US National Osteoporosis Foundation position state-
ment on PBM development sets out the available evidence 
for calcium intake on bone accretion, especially during late 
childhood and the peripubertal years [35]. This evidence 
also shows that bone mass attainment from childhood to 
young adulthood is crucial in preventing osteoporosis and 
osteopenia later in life [35].

Dysregulated mineral metabolism in CKD

In CKD, the normally tightly regulated calcium–phos-
phate–PTH–vitamin D axis is disrupted. In early CKD, an 
increased production of FGF23, together with its co-receptor 
Klotho, occurs in response to higher levels of serum phos-
phorous to induce phosphaturia [10, 11] and suppress calci-
triol production [12], thereby returning serum phosphorous 
to normal levels. This early rise of FGF23 precedes the PTH 
rise [44–46]. Following this, a combination of reduced phos-
phate excretion and a decrease in 1-alpha-hydroxylation of 
25-hydroxyvitamin D by the kidney tissue leads to hypoc-
alcaemia, which in turn leads to increased production of 
PTH [47]. The hyperparathyroidism aims to keep the serum 
calcium levels within the normal physiological range by 
increasing bone resorption and thus calcium release from 
the bone. In bone, PTH binds to the PTH receptor on the 
surface of osteoblasts, increasing the expression of RANKL 
which leads to osteoclast activation. That stimulates resorp-
tion which releases calcium, aiming to maintain normal 
serum levels. This affects the total bone mineral content and 
increases cortical porosity [48–50]. The PTH effect on bone 
is also, to some degree, mediated by inhibiting the expres-
sion of sclerostin by osteocytes [51]. Sclerostin is secreted 
by osteocytes to inhibit the differentiation of precursor cells 
into osteoblasts [52]. It also inhibits the Wnt pathway signal-
ling, acting on osteoblasts to reduce bone formation [53]. 
Higher levels are found in CKD patients [54] and associated 
with the reduction in bone formation, but its precise effect 
on the calcification of vessels has not been fully elucidated 
[55]. FGF23, also secreted by osteocytes, directly inhibits 
Wnt signalling pathways which are needed in bone minerali-
zation [56]. Overall, this hyperparathyroid state of increased 

Fig. 2  Peak bone mass and the 
risk of osteoporosis with CKD. 
Bone mass attainment, through 
sufficient mineral accrual in 
childhood, adolescence and 
young adulthood is crucial in 
preventing lower bone mineral 
density in later life.  Adapted 
from Weaver et al. 2016 [27], 
with permission
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resorption leads to demineralization, loss of normal bone 
architecture and an increased fracture risk [57, 58].

As the pathophysiology of CKD-MBD is better understood, 
the role of biomarkers becomes clearer. Routinely used serum 
biomarkers such as PTH, calcium, phosphate and alkaline 
phosphatase are only moderate predictors of the bone turnover, 
volume and mineralization as assessed by bone biopsy [59]. 
Their trends over time are used for the best clinical estima-
tion of bone health [60]. A cross-sectional study examining 
cortical BMD by peripheral quantitative CT (pqCT) scan in 
children and young adults with CKD or on dialysis, found that 
serum biomarkers accounted for only 57% of the variability 
[61]. Lumbar spine DXA was not predictive of cortical BMD 
as assessed by pQCT [61].

Clinical and radiological correlations 
with mineralization defects in CKD

In childhood, cortical demineralization and disrupted bone 
architecture affect bone formation and growth, with bone 
pain, limb deformities and poor final height attainment 
all being described in children with CKD [62–66]. This 
process starts in the early stages of CKD and worsens as 
CKD progresses [63, 67]. Severe bone disease can present 
clinically as slipped epiphyses, abnormal gait, reduced 
mobility, genu valgum and genu varum [68]. In a cohort 
of 900 children and adolescents on peritoneal dialysis, 
limb deformities, pain, and radiological signs of bone 
disease were present in 15% [66]. The CKD in Children 
(CKiD) study evaluated the prevalence of fractures in chil-
dren with CKD. In this young cohort (median age of 11 
(7.4–14.5) years) with predominantly mild to moderate 
CKD (median eGFR 46.5 (34.4–58.5) ml/min/1.73  m2), 
the reported fracture rates were 2.4 and threefold higher in 
males and females respectively compared to their healthy 
peers [48] and exceeded those reported in adult haemodi-
alysis patients [69]. The factors independently associated 
with a higher fracture rate were baseline difficulty in walk-
ing, Tanner puberty stages 4–5, greater height Z-score, 
higher PTH levels, and team sports participation (in ≥ 1 
sport: HR 2.35, 95% CI 1.01–5.47, p = 0.047; in ≥ 2 sports: 
HR 4.87, 95% CI 2.21–10.75, p < 0.001). The only pro-
tective factor identified was phosphate binder use, which 
afforded a 63% lower fracture risk. As 82% of patients 
in this study were on calcium-based phosphate binders, 
it could be speculated that improved phosphate control 
or the calcium absorption from the binder may have had 
some protective benefit [48]. Thus, as in healthy young 
people, the growing skeleton of children with CKD may 
also need sufficient calcium to promote effective bone 
mineralization. A similar high prevalence of fractures 
had been reported in a study of 170 children and young 

people up to 21 years old in CKD 2–5 and on dialysis. At 
least one fracture was reported in 6.5% of the children 
in a one-year follow-up period. Independent risk factors 
attributed to the fracture risk were rapid growth in ado-
lescence, lower calcium and 25(OH)D levels as well as a 
higher PTH at the baseline assessment. A lower cortical 
BMD Z-score predicted future fractures; the hazard ratio 
for fractures was 1.75 (95% CI 1.15 − 2.67; p = 0.009) per 
standard deviation decrease in baseline BMD [63]. On 
longitudinal follow-up of this cohort, children with lower 
serum calcium levels had a loss of BMD, associated with 
higher PTH levels. The longitudinal change in cortical 
BMD with the associated increase in calcium levels was 
most marked in children showing linear growth [63].

These clinical manifestations of bone disease linked to 
CKD-MBD that develop during the pre-transplant period 
may be further exacerbated after transplantation. A study 
following children who received a solid-organ transplant 
over five years, showed that they had a sixfold higher inci-
dence of fractures overall, but particularly vertebral fractures 
(160-fold) compared to healthy peers [70].

The dysregulated mineral homeostasis in CKD produces 
far-reaching consequences even into adulthood, with sig-
nificant associated morbidity. A study of 249 young adults 
with childhood onset of CKD stage 5 showed that 37% had 
symptoms of bone disease (deformities, bone pain, aseptic 
bone necrosis and atraumatic fractures), 18% were disabled 
by bone disease and 61% had severe growth restriction [62]. 
A recent study in children and young adults with CKD or on 
dialysis has shown that significant daily bone pain occurred 
in 58% of participants. The most common sites were the 
lower limbs, back and hips. The pain inhibited activities of 
daily living and required the frequent use of analgesia. Ten 
percent of the participants reported at least one previous 
atraumatic fracture during their time with eGFR < 30 ml/
min/1.73  m2 [61].

Thus, as in healthy young people, the growing skeleton 
of children with CKD also needs calcium.

Mineralization abnormalities on bone 
histology

Mineralization abnormalities have been shown in many 
bone biopsy specimens of children with CKD (see Table 2). 
Bakkaloglu et al. reviewed bone biopsies of 161 children 
on PD and identified mineralization abnormalities, char-
acterised by increases in both osteoid volume and osteoid 
maturation time in 48% of all patients. Abnormal miner-
alization was found in 58% of participants with high bone 
turnover, 38% with normal turnover and 29% with low 
turnover. Of note, routinely used clinical markers such as 
serum PTH and alkaline phosphatase correlated with bone 
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turnover (PTH: r = 0.61, p < 0.01; alkaline phosphatase: 
r = 0.51, p < 0.01) but only serum calcium was inversely 
related to mineralization (p < 0.01). In any turnover state, 
higher PTH values and lower calcium values were asso-
ciated with abnormal mineralization [59]. In a separate 
study of 60 children on dialysis, 80% of participants had 

poor mineralization despite treatment with active vitamin 
D analogues [71]. Similar results were found in a cohort of 
42 children on dialysis with low turnover bone disease in 
59%. Abnormal mineralization was found in 29% of them 
and associated with higher PTH and alkaline phosphatase 
levels, as well as negatively with serum calcium [72]. 

Table 2  Mineralization abnormalities found on bone biopsy in children and young adults

*Prior to the TMV criteria for reporting bone biopsy results, the assumption was made that both osteitis fibrosa and mixed disease are character-
ized by increased turnover, but osteitis fibrosa has normal mineralization, whereas mixed disease has abnormal mineralization. Equally, osteoma-
lacia and adynamic disease are states of decreased turnover, with abnormal mineralization in osteomalacia and acellularity in adynamic disease 
[68]. The mineralization rates in adynamic bone disease are subnormal, but for the purposes of this table, if prior to the TMV criteria, they have 
not been included in the total percentage of mineralization abnormalities[81]

Authors, Year (reference) Population (n) and 
CKD / dialysis status

Age (years) Key Findings on bone biopsies Mineralization abnormalities*

Salusky et al. 1988
[74]

PD (44) 6–18 Normal histology in 16%
Osteitis fibrosa in 39%
Aplastic lesions in 11%
Osteomalacia in 9%

9% of participants
Study prior to TMV criteria

Mathias et al. 1993 [75] HD (21) 16–19 High turnover disease in 38%
Osteitis Fibrosa in 23%
Adynamic bone in 28%

19% of participants with mixed 
lesions

Study prior to TMV criteria
Goodman et al. 1994 [76] PD (14) 13–14 Before calcitriol:

Osteitis Fibrosa in 79%
After calcitriol:
Normal in 43%
Adynamic in 43%
Osteitis fibrosa in 7%
Mixed in 7%

7% of participants
Study prior to TMV criteria

Yalçinkaya et al. 2000 [77] PD (17) 7–20 High turnover disease in 47%
Low turnover disease in 29%
Mixed in 24%

24% of participants

Ziólkowska et al. 2000 [78] HD (21), PD (30) 7–15 Adynamic bone disease in 27%
Normal bone in 37%
Osteomalacia in 2%
Hyperparathyroidism in 24%
Mixed lesions in 10%

12% of participants

Waller et al. 2008 [73] Pre-Tx (11) 7–16 Low bone turnover disease in 18%
Mixed lesions in 27%
Hyperparathyroidism in 36%

81% of participants

Bakkaloglu et al. 2010 [59] PD (161) 0–20 Low turnover in 4%
Normal turnover in 39%
High turnover in 57%

Abnormal mineralization in 48%

Wesseling-Perry et al. 2012 [46] CKD2–5 (52) 2–21 High bone turnover in:
13% with CKD3
29% with CKD 4/5

Defective mineralization in:
29% with CKD2
42% with CKD3
79% with CKD4/5

Bacchetta et al. 2013 [79] PD (33) 2–21 Patients assigned to treatment with 
growth hormone vs not

At baseline:
High turnover in 58%
Low turnover in 42%

Mineralization lower in those with 
low bone turnover (p < 0.001)

Overall mineralization lag time 
lower in patients treated with 
growth hormone (p = 0.03)

Nawrot-Wawrzyniak et al. 2013 
[80]

HD (7), PD (11) 3–16 At baseline:
Low bone turnover 39%
Normal turnover 22%

Mineralization lag time shortened 
after treatment with growth 
hormone (p < 0.05)

Soeiro et al. 2020 [72] CKD 5D 0–16 Low turnover in 59%
Normal turnover in 24%
High turnover in 17%

Defective mineralization in 29%
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Most importantly, mineralization is a significant abnor-
mality in children with CKD [73], and is seen even in the 
early stages of CKD, before abnormalities in serum cal-
cium, phosphate or PTH manifest, increasing as the eGFR 
decreases (29% of those in CKD stage 2, 42% in CKD 
stage 3, and 79% in CKD stages 4/5) [46]. In 60 paediat-
ric patients on peritoneal dialysis, the majority of whom 
had mineralization defects on bone biopsy, treatment with 
active vitamin D sterols (calcitriol or doxercalciferol) and 
phosphate binders (calcium carbonate or sevelamer) for 
8 months did not normalise the mineralization indices 
despite controlled PTH levels [71].

In contrast, adults on dialysis suffer predominantly 
from low turnover or adynamic bone disease (ABD) 
[81, 82]. In the past, it was thought that this was related 
to overtreatment of secondary hyperparathyroidism 
with calcium (oral, as phosphate binders, or through 
the dialysate) and vitamin D analogues [83]. However, 
recent studies have shown a high prevalence of ABD in 
treatment-naive patients, in early stages of CKD [84], 
where conditions that inhibit bone remodelling, such as 
resistance to the action of PTH, reduced levels of calci-
triol, deficiency of sex hormones, diabetes, and uremic 
toxins such as indoxyl sulfate and sclerostin, are present 
[85, 86]. Under these circumstances, the high turnover 
disease would only occur later when serum PTH levels 
could overcome peripheral resistance to this hormone 
and other factors that inhibit bone formation [87]. With 
the progression of CKD, elevated PTH would activate 
the PTH/PTHrP receptor on osteocytes, suppressing 
sclerostin and increasing the cellular activity of osteo-
blasts and osteoclasts, resulting in high bone turnover 
[88]. Also, mineralization defects are far less common in 
adults, being observed predominantly in individuals with 
severe forms of secondary hyperparathyroidism [89–91]. 
In this situation, bone turnover is greatly increased, and 
mineralization, a process that requires a certain amount of 
time, will not be completed at the time when bone resorp-
tion is already occurring [88, 89, 91].

The state of hyperparathyroidism in CKD leads to cal-
cium and phosphate release from the bones and the skeleton 
loses its ability to undertake the normal resorption-formation 
cycle of remodelling. This leads to an inability to absorb and 
deposit any excess calcium as hydroxyapatite, during tran-
sient episodes of hypercalcaemia. Excess calcium may come 
from the diet or from calcium-based phosphate binders. This 
has far-reaching consequences, as vascular calcification is 
found in a far greater proportion of CKD patients compared 
to the healthy population. So, could this resorptive state of 
the bones contribute to the vascular calcification and thus 
the excessive mortality rates?

Vascular calcification in CKD

CVD accounts for up to 30% of deaths in children on dialysis 
[92], and a 1000-fold higher mortality rate in young adults 
on dialysis compared to their healthy peers [93], with a sig-
nificant decline in survival with worsening kidney function 
[94]. Vascular calcification has been causally associated with 
the higher cardiovascular mortality even in young people 
and in those with earlier stages of CKD [95–100].

In adults, coronary calcification starts early in CKD and 
progresses rapidly on dialysis. It is found in as many as 40% 
of patients in CKD stages 3–4 (GFR 33.0 ± 16.0 mL/min/1.73 
 m2) [101], increasing to 57% of incident hemodialysis patients 
[102], and up to 83% of patients on maintenance dialysis for 
a median of 3.6 years [103]. Although most studies show-
ing coronary artery calcification (CAC) in adults included 
older participants [102, 104–106], this has been shown in 
pediatric patients on dialysis as well [49, 50, 107]. Children, 
adolescents and young adults with CKD are shown to have 
CAC with very different prevalences in different reports. In 39 
patients aged up to 30 years old, 35% of patients had evidence 
of CAC [108]. Young adults with childhood onset CKD had a 
92% prevalence of CAC [49]. A more recent cohort study of 
children and young adults with CKD and on dialysis aged 5 
to 30 years old, showed that 10% of the participants had evi-
dence of CAC. Overall, 84% of the cohort had either structural 
or functional changes associated with vascular calcification. 
Participants on dialysis had significantly increased measures 
of arterial stiffness [109].

In fact, once coronary calcification is present, it pro-
gresses rapidly [108], and is significantly associated with 
raised serum calcium and phosphate levels [50, 107, 108, 
110–112]. Vessel biopsy studies show that calcification 
is predominantly seen in the medial layer of the arteries 
[113], also known as arteriosclerosis or Mönckeberg’s scle-
rosis [113]. In pre-dialysis patients, calcium accumulation 
correlates with serum calcium and phosphate levels [114]. 
With increasing dialysis duration, the vessels exhibit a much 
higher hydroxyapatite crystal deposition in the tunica media 
of the artery associated with vascular smooth muscle cell 
(VSMC) death. This process is strongly associated with high 
circulating calcium and phosphate levels [115].

Medial calcification in the vessels is not simply a pas-
sive ‘dumping’ of hydroxyapatite crystals but an active, 
cell-mediated process with many similarities to bone min-
eralization. VSMCs undergo osteochondritic changes with 
an upregulation of osteoblastic proteins [116]. Due to CKD, 
the normal calcification inhibiting factors such as fetuin A 
and OPG are downregulated [117], and VSMCs produce 
calcifying vesicles that contain hydroxyapatite [113, 118, 
119]. Once a nidus of calcification is formed, the VSMC 
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undergoes apoptosis, releasing the hydroxyapatite nanocrys-
tals in matrix vesicles, which go on to form other areas of 
calcification [120], leading to accelerated calcification in 
the face of hypercalcaemia and hyperphosphatemia of CKD.

Ongoing arteriosclerosis causes progressive vessel stiff-
ness [121]. Arterial stiffness may cause an increase in car-
diac afterload, leading to left ventricular hypertrophy and 
remodelling [122]. The structural changes, such as carotid 
intima media thickness (cIMT) increase and subsequent stiff-
ening, begin in early CKD stages and functional abnormali-
ties due to remodelling occur in later stages with progres-
sion of CVD [123]. This temporal association of structural 
changes with functional abnormalities needs to be elucidated 
further [124]. It may serve as a potential surrogate marker 
for disease progression and effect monitoring, as well as a 
treatment target. Increased arterial stiffness, as measured by 
pulse wave velocity (PWV), has been linked to ischaemic 
heart disease, stroke and CVD events in a meta-analysis of 
over 17,000 adults [125].

These data suggest that vascular calcification occurs in 
all age groups with CKD and is driven by hypercalcemia 
and dysregulated mineral metabolism. The co-existence of 
vascular calcification and BMD reduction are shown to be a 
part of the CKD-MBD spectrum [60], but it was not clear if 
these are parallel or inter-dependent processes.

Bone–vascular link in CKD

A link between bone demineralization and vascular calci-
fication has been suggested from clinical studies in adults 
with CKD. A “calcification paradox” [126] wherein skeletal 
demineralization is associated with concurrent soft tissue 
and vascular calcification, has been shown in adults on dialy-
sis. Cejka et al. reported that tibial BMD and bone volume/
total volume by high resolution pqCT scan were signifi-
cantly lower in patients with raised CAC scores (p < 0.05) 
[105]. Chen et al. showed that in 231 adult participants 
aged 28–75 years (mean age 56 years, 95 on hemodialysis, 
55 on peritoneal dialysis and 81 transplanted), those with 
low vertebral body density (measured on a cardiac CT) had 
higher CAC scores, and a higher all-cause mortality [127]. 
Malluche et al. showed that over one year of follow-up of 
patients on dialysis, three quarters had CAC progression. 
Progression of CAC was higher in patients with BMD loss 
(p = 0.001). Importantly, with adjustment for age, bone dem-
ineralization was a predictor for CAC progression (β = 4.6; 
95% CI 1.8 to 7.5; p = 0.002) [106].

Studies examining coronary calcification in relation to 
bone biopsy findings have reported that both low and high 
turnover disease is associated with calcification. Asci et al. 
performed bone biopsies in 207 adult patients receiving 
haemodialysis (participants aged 32–75 years). Of these 

patients, 69% had CAC. Higher CAC scores were associ-
ated with increasing age, dialysis vintage, and bone turnover 
(p = 0.013). Low bone turnover was negatively associated 
with CAC (p = 0.03) and high bone turnover was positively 
associated with CAC (p = 0.01) [128]. Barreto et al. have 
shown in adult dialysis patients that both high and low turno-
ver abnormalities showed calcification progression over one 
year of follow-up. Conversely, patients with non-progressing 
calcification, with an initial high turnover subsequently had 
decreased bone formation rate, and those initially with low 
turnover subsequently had increased bone formation rate 
(p = 0.003) and osteoid volume [129]. Another study of 
adult haemodialysis patients measured vascular calcifica-
tion and bone turnover pre- and post-parathyroidectomy. 
After surgery, vascular calcification did not progress in the 
initial 6 months (hungry bone syndrome period). However, 
as alkaline phosphatase returned to normal levels, coronary 
calcification score started to increase again [130].

The co-existence and association between bone deminer-
alization and vascular calcification is not only seen in adult 
dialysis patients but also in pre-dialysis patients. Filgueira 
et al. found that 50% of 72 adults (age 52 ± 11.7 years, eGFR 
40.4 ± 18.2 ml/min/1.73  m2) had coronary calcifications 
(severe calcification in 19%; > 400 Agatston units). Coronary 
calcifications and vertebral body bone mineral density was 
inversely correlated (p = 0.01), with the highest CAC scores 
in those within the lowest tertile for BMD (p = 0.04) [131].

In addition to the above studies linking vascular calcifica-
tion to bone demineralization, randomized controlled trials 
and metanalyses have repeatedly shown a higher all-cause 
mortality associated with calcium-based phosphate binder 
use, compared to non-calcium-based binders [132, 133]. 
This has led to an association between calcium and worse 
outcomes and a concerted effort to limit calcium intake, 
through diet or through medications and dialysis fluid, in 
adult CKD and dialysis patients [134].

Importantly, all the above studies showing CAC associa-
tion with bone demineralization in adults, and importantly 
their respective progression, examined participants over the 
age of 40, with the average age being around 65 years old. 
As explained in earlier sections of this review, it is crucial 
that data from studies in older adults are not extrapolated 
to children or young adults with CKD given the extremes 
of bone physiology that are seen in the young and old. 
The growing skeleton of children and young people up 
to 30 years old is a different metabolic entity, as calcium 
accrual should still be ongoing. Perhaps this means that 
the growing skeleton is able to buffer and absorb excess 
calcium, that is thought to start the vascular calcification 
cascade in older individuals? Alternatively, due to CKD, 
perhaps the buffering capacity of bone for calcium is lost 
and even young people with CKD are at an increased risk 
of vascular calcification?
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There is a paucity of studies examining bone and car-
diovascular status in children and young adults with CKD. 
Preka et al. demonstrated that trabecular thickness by high 
resolution-pQCT (HR-pQCT) was positively associated 
with diastolic and mean arterial BP [135]. Ziolkowska et al. 
showed that cIMT correlated with lumbar spine BMD and 
total body DXA [136]. Both studies were cross-sectional, so 
the causal effect of BMD on surrogate markers of vascular 
calcification cannot be determined.

Our group undertook a multi-centre, longitudinal study, 
recruiting 100 participants aged 5–30  years old [137]. 
Twenty-three patients had CKD 4–5 and 75 were on dialy-
sis. The median dialysis duration was 2.5 years (IQR 0.8, 
5.1). At baseline, there was significant structural and func-
tional vascular disease, with the medican cIMT z-score 
raised at 2.2 (IQR 1.1, 2.9) and median PWV z-score at 
1.5 (IQR –0.2, 2.6). Ten percent of the young cohort had 
CAC (Agatston score range 0 to 413). We showed that for 
57 patients, over 1.5 years follow-up, surrogate markers of 
vascular calcification and vessel stiffness (cIMT, PWV) 
worsened despite ongoing bone mineralization. An annual-
ized increase in trabecular BMD Z-score was an independ-
ent predictor of cIMT Z-score increase  (R2 = 0.48, β = 0.40, 
p = 0.03). However, young people who still demonstrated 
statural growth, had attenuated vascular changes (lower 
cIMT, PWV and carotid distensibility annualised Z-score 
changes) [137]. These results suggested that statural growth 
may be a significant factor in the relationship between bone 
and blood vessels in CKD. The process of ongoing bone 
mineral accrual may be a protective factor, buffering the 
vasculature from high circulating calcium and phosphate. It 
may be hypothesized that when the period of rapid growth 
in adolescence ceases, then the absorption of minerals by the 
skeleton decreases, leading to increasing structural arterial 
wall changes.

Other factors that affect bone 
demineralization and vascular calcification

Microinflammation seems to be a key factor for both vas-
cular calcification and bone disease in CKD. Studies have 
shown an association between inflammatory markers, such 
as IL-6, TNF-α and C-reactive protein and low bone volume 
[138, 139]. The question that arises is whether inflammation 
induces bone disease leading to a pro-calcifying milieu, or 
if calcification comes first, followed by bone loss. A third 
hypothesis would be inflammation leading simultaneously 
to bone and arterial disease. In favor of the first hypoth-
esis, ex vivo culture of peripheral blood mononuclear cells 
of patients undergoing hemodialysis showed spontaneous 
osteoclastogenesis and release of inflammatory cytokines 
such as LIGHT, a new pro-osteoclastogenic cytokine, and 

RANKL [140]. Also, mutations in several macrophage-
related genes might affect bone mass [141]. Conversely, the 
osteoblastic/osteocytic differentiation of VSMCs driven by 
inflammation could increase the secretion of sclerostin by 
these cells, inhibiting calcification. The consequence would 
be a decrease in bone formation rate [142]. In line with this 
hypothesis, aortas derived from uremic rats that were trans-
planted into healthy animals caused a decrease in bone mass. 
These uremic vessels secreted sclerostin in ex vivo cultures, 
strongly suggesting the role of vascular sclerostin in the bone 
mass loss [143].

Nevertheless, the bone–vascular axis points to causal fac-
tors common to both conditions [126, 144]. Malnutrition-
inflammation complex syndrome (MICS) promotes vascular 
calcification in CKD. A study in uremic rats showed that 
low dietary protein raised serum levels of osteocalcin and 
increased vascular calcification [145]. Other studies showed 
that hypoalbuminemia was associated with low serum fetuin-
A [145, 146] and negatively associated with calcification 
score [147]. On the other hand, the development of vas-
cular calcification and bone disease occurs in parallel with 
micronutrient deficiencies. Vitamin K-dependent proteins 
(VKDP), as well as osteocalcin (OC) and matrix Gla-pro-
tein (MGP), are essential regulators of bone mineralization 
[148] which may contribute to greater understanding of the 
development of vascular calcification, and provide potential 
therapeutic tools. In CKD patients, vitamin K deficiency 
was the strongest predictor of vertebral fractures, aortic cal-
cification, and iliac calcification in hemodialysis patients 
[149]. Moreover, magnesium may inhibit the calcification 
of VSMCs induced by phosphate. It may suppress the matu-
ration of calciprotein particles (CPPs), which in turn, partici-
pate in the pathogenesis of vascular calcification [150]. In 
CKD patients, magnesium deficiency aggravates inflamma-
tion and contributes to vascular calcification and mortality 
[150]. Furthermore, hypomagnesemia is associated with an 
increased risk of hip fracture in patients undergoing hemo-
dialysis/hemodiafiltration [151].

Dyslipidemia is an important risk factor for BMD and vascu-
lar calcification in CKD patients. Apolipoprotein E is a ligand 
for receptors that clear chylomicrons and VLDL remnants. 
CKD-induced ApoE knock-out mice exhibited a significant 
increase of atherosclerotic plaque in the thoracic aorta, associ-
ated with high bone turnover and mineralization defects [152].

Deregulations in gut microbiota also contribute to vas-
cular and bone disease in CKD patients, the “gut–vas-
cular–bone axis”. For example, gut microbiota moving 
from saccharolytic to proteolytic fermentation pattern, 
an altered intestinal barrier function, and low vitamin K 
may promote vascular calcifications [153]. In addition, in 
CKD patients, gut dysbiosis and increased intestinal per-
meability contribute to the accumulation of serum uremic 
toxins, including p-cresyl sulfate (P-CS), indoxyl sulfate 
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(IS), and trimethylamine N-oxide (TMAO), all of which 
have pro-inflammatory effects [154]. IS induces reactive 
oxygen species (ROS) generation and stimulates an osteo-
genic phenotype in VSMCs [155]. Clinical studies demon-
strated a positive association between IS serum levels and 
PWV and aortic calcification in different stages of CKD in 
adults, [156, 157] and cIMT and progression of PWV in 
children, independent of other risk factors [158]. A study 
of osteoblastic cells showed that IS suppresses bone for-
mation, induces osteoclastic bone resorption indirectly by 
IL-1, and suppresses the differentiation of macrophages 
into mature osteoclasts, suggesting a direct action of IS in 
bone tissues [159]. Another in vitro study showed impaired 
mineralization in MSC-osteoblastic cells treated with P-CS 
and IS [160].

There is increasing evidence suggesting a close relation-
ship between vascular calcification and bone disease. How-
ever, the common pathogenetic mechanisms that involve 
the bone–vascular axis are still unknown. The elucidation 
of these mechanisms may contribute to the development 
of vascular calcification and bone biomarkers and provide 
potential therapeutic tools.

Calcium balance studies in CKD

Calcium must play a major role in vascular calcification, 
and transient hypercalcaemia, either due to dialysis, cal-
cium-based phosphate binders or vitamin D analogues, 
may influence vascular calcification [32–34]. However, 
serum calcium levels do not reflect the total body calcium 
content as 99% of the total body calcium is stored in the 
bones. In addition, low turnover or adynamic bone can-
not buffer any excess calcium or phosphate or transient 
increases in these, and may further promote or directly 
cause extraskeletal calcification [34]. Calcium balance 
studies, with strictly controlled calcium intake and output 
measurements, that allow calculation of the net calcium 
gain or loss are extremely challenging and laborious, with 
only two calcium balance studies in adult CKD patients 
to date [134, 161]. This is further complicated in dialysis 
patients where dialysis may induce positive or negative 
fluxes of calcium in soft tissues and bones.

Healthy adults are generally in a neutral balance; up 
to the age of 50 years in women and 60–70 years in men, 
with postmenopausal women and older adults developing 
physiological bone loss and a negative calcium balance 
[134]. In patients with CKD, a positive calcium balance 
may indicate extraskeletal calcification, as opposed to 
bone deposition. Meta-analyses in adult participants tend 
to find a higher cardiovascular morbidity and mortality 
associated with calcium-based phosphate binders [132]. 
Calcium balance studies in CKD patients have shown that 

participants on a higher calcium intake were in a positive 
calcium balance, compared to participants on a low cal-
cium intake. However, their urine calcium output did not 
differ [161, 162]. The main concern this raises, therefore, 
is whether this calcium retention reflects extraskeletal 
calcification.

It is widely accepted that biomarkers such as calcium, 
phosphate and alkaline phosphatase do not perform well 
in quantifying bone mineralization in the general popula-
tion and in disease states such as osteoporosis or CKD. An 
accurate, non-invasive and easily reproducible biomarker of 
bone and vascular health is needed in patients with CKD in 
order to target treatments appropriately. Naturally occurring 
calcium isotopes and their ratio (δ44/42Ca) in the serum and 
urine seem promising and have so far shown good posi-
tive correlation with bone formation markers and negative 
correlation with bone resorption markers in healthy chil-
dren, children and young adults with CKD [163] and older 
women with osteoporosis [164, 165].

Further, detailed calcium balance studies are needed in 
children and young adults with CKD, where the mineral-
izing bone requires a higher calcium intake. Calcium may 
be a protective factor against bone fragility and demin-
eralization as suggested in some clinical studies [63]. In 
this population, perhaps calcium containing phosphate 
binders may be preferable to non-calcium containing 
binders. The need to reconcile this requirement with the 
burden of vascular calcification needs to be explored in 
large longitudinal studies in children and young adults, 
examining the link between bone and vessel calcification 
in CKD.

Conclusion

Management of CKD-MBD in the growing child requires 
the treating physician to reconcile the skeletal requirements 
for calcium, phosphate and vitamin D, but simultaneously 
avoiding exposure to excess calcium that can lead to vascu-
lar calcification and increase cardiovascular mortality. The 
growing skeleton may provide a degree of protection by 
buffering an excess calcium intake, especially during peri-
ods of rapid linear growth. The management of CKD-MBD 
in young adults more closely reflects that in children rather 
than that seen in older adults on dialysis.

Summary points

1. Adequate calcium intake is vital for normal bone min-
eralization in childhood.

2. Healthy people are in a positive calcium balance until 
the third or fourth decade of life.
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3. Young people with CKD can have a significant mor-
bidity from bone disease, manifesting with bone pain, 
slipped epiphyses, limb deformities or fractures.

4. In children with CKD the predominant finding on bone 
biopsy is abnormal mineralization.

5. There is increasing evidence that bone demineralization 
and vascular calcification occur concurrently in children 
and adults with CKD, and the processes may be linked.

6. Management of CKD-MBD in young adults should fol-
low the principles of treatment in children, rather than of 
the calcium-sparing strategies followed in older adults.

Multiple choice questions (answers appear 
below)

1. Which statement is correct:

a The process of bone formation, resorption and 
remodelling is known as bone turnover

b Cortical bone is more metabolically active than tra-
becular bone

c The trabecular compartment is the mineral rich, 
dense bone compartment

d There are only 2 cell types in the bone; osteoblasts 
and osteoclasts

e The predominant driving force in bone in adults is 
bone formation

2. Clinical manifestation of mineral bone disease includes:

a Bone pain
b Limb deformities
c Fractures
d Slipped epiphyses
e All of the above

3. Calcium balance is:

a Positive until around 30 years of age
b Positive until around 15 years of age
c Positive until around 50 years of age
d Negative after 60 years of age
e Neutral throughout life

4. The predominant abnormality found in bone biopsies of 
children with CKD is:

a Low bone turnover
b High bone turnover
c Abnormal mineralization
d Osteitis fibrosa
e Aluminium staining

5. Which statement is correct:

a Vascular calcification is associated with an increased 
morbidity and mortality in people with CKD

b Coronary artery calcification is only seen in older 
adults with CKD

c Dialysis attenuates the progression of vascular cal-
cification

d Vascular calcification involves dumping of excess 
calcium and phosphate from calcium-containing 
medications in blood vessels
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